Title: | Wavelet Deconvolution |
---|---|
Description: | Makes available code necessary to reproduce figures and tables in papers on the WaveD method for wavelet deconvolution of noisy signals as presented in The WaveD Transform in R, Journal of Statistical Software Volume 21, No. 3, 2007. |
Authors: | Marc Raimondo <[email protected]> and Michael Stewart <[email protected]> |
Maintainer: | Michael Stewart <[email protected]> |
License: | GPL |
Version: | 1.3 |
Built: | 2024-10-12 02:38:16 UTC |
Source: | https://github.com/cran/waved |
Computes the Forward WaveD Transform.
FWaveD(y,g=1,L=3,deg=3,F=(log2(length(y))-1),thr=rep(0,log2(length(y))),SOFT=FALSE)
FWaveD(y,g=1,L=3,deg=3,F=(log2(length(y))-1),thr=rep(0,log2(length(y))),SOFT=FALSE)
y |
Sample of |
g |
Sample of |
L |
Lowest resolution level; the default is 3. |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3 (the default). |
F |
Finest resolution level; the default is the data-driven choice j1 (see Value below). |
thr |
A vector of length |
SOFT |
if SOFT=TRUE, uses the soft thresholding policy as opposed to the hard (SOFT=FALSE, the default). |
Returns a vector of wavelet coefficients of length n (the same length as y),
the last entries are wavelet coefficients at resolution level
, where
; the
entries before that are the wavelet coefficients at
resolution level
, and so on until level L. In addition the
entries
are scaling coefficients at coarse level
.
Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004), 'Wavelet deconvolution in a periodic setting', Journal of the Royal Statistical Society, Series B 66(3),547–573. with discussion pp.627–652.
Raimondo, M. and Stewart, M. (2006), ‘The WaveD Transform in R’, preprint, School and Mathematics and Statistics, University of Sydney.
library(waved) data=waved.example(TRUE,FALSE) lidar.w=FWaveD(data$lidar.blur,data$g)
library(waved) data=waved.example(TRUE,FALSE) lidar.w=FWaveD(data$lidar.blur,data$g)
Performs statistical wavelet deconvolution using Meyer wavelet.
WaveD(yobs,g=c(1,rep(0,(length(yobs)-1))),MC=FALSE,SOFT=FALSE, F=find.j1(g,scale(yobs))[2],L=3,deg=3,eta=sqrt(6), thr=maxithresh(yobs,g,eta=eta),label="WaveD")
WaveD(yobs,g=c(1,rep(0,(length(yobs)-1))),MC=FALSE,SOFT=FALSE, F=find.j1(g,scale(yobs))[2],L=3,deg=3,eta=sqrt(6), thr=maxithresh(yobs,g,eta=eta),label="WaveD")
yobs |
Sample of |
g |
Sample of |
MC |
Option to only return the (fast) translation-invariant WaveD estimate (MC=TRUE) as opposed to the full WaveD output (MC=FALSE, the default), as described below. MC=TRUE recommended for Monte Carlo simulation. |
SOFT |
if SOFT=TRUE, uses the soft thresholding policy as opposed to the hard (SOFT=FALSE, the default). |
F |
Finest resolution level; the default is the data-driven choice j1 (see Value below). |
L |
Lowest resolution level; the default is 3. |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3 (the default). |
eta |
Tuning parameter of the maxiset threshold; default is |
thr |
A vector of length |
label |
Auxiliary plotting parameter; do not change this. |
In the case that MC=TRUE, WaveD returns a vector consisting of the translation-invariant WaveD estimate. In the case that MC=FALSE (the default), WaveD returns a list with components
waved |
translation invariant WaveD transform; in the case MC=TRUE this is all that is returned. |
ordinary |
ordinary WaveD transform |
FWaveD |
Forward WaveD Transform; see |
w |
alternate name for FWaveD |
w.thr |
thresholded version of w |
IWaveD |
Inverse WaveD Transform |
iw |
alternate name for IWaveD |
s |
estimate of the noise standard deviation |
j1 |
estimate of optimal resolution level (for maxiset threshold). |
F |
Fine resolution level used (may be different to j1). |
M |
estimate of optimal Fourier frequency (for maxiset threshold). |
thr |
vector of thresholds used (default is maxiset threshold). |
percent |
percentage of thresholding per resolution level |
noise |
noise proxy, wavelet coefficients of the raw data at the largest resolution level, used for estimating noise features. |
ps |
P-value of the Shapiro-Wilk test for normality applied to the noise proxy. |
residuals |
wavelet coefficients that have been removed before fine level F. |
Marc Raimondo and Michael Stewart
Cavalier, L. and Raimondo, M. (2007), ‘Wavelet deconvolution with noisy eigen-values’, IEEE Trans. Signal Process, Vol. 55(6), In the press.
Donoho, D. and Raimondo, M. (2004), ‘Translation invariant deconvolution in a periodic setting’, The International Journal of Wavelets, Multiresolution and Information Processing 14(1),415–423.
Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004), 'Wavelet deconvolution in a periodic setting', Journal of the Royal Statistical Society, Series B 66(3),547–573. with discussion pp.627–652.
Raimondo, M. and Stewart, M. (2007), ‘The WaveD Transform in R’, Journal of Statistical Software.
library(waved) data=waved.example(TRUE,FALSE) doppler.wvd=WaveD(data$doppler.noisy,data$g) summary(doppler.wvd)
library(waved) data=waved.example(TRUE,FALSE) doppler.wvd=WaveD(data$doppler.noisy,data$g) summary(doppler.wvd)
Generate data sets and figures to illustrate the WaveD function.
waved.example(pr = TRUE, gr=TRUE)
waved.example(pr = TRUE, gr=TRUE)
pr |
If pr=TRUE (default) uses the same parameters as in the reference paper below. If pr=FALSE user level parameter specifications. |
gr |
If gr=TRUE (default) text and graphical displays are provided. |
lidar.noisy |
Noisy blurred LIDAR signal (Gaussian noise) |
lidar.noisyT |
Noisy blurred LIDAR signal (Student $t_2$ noise) |
doppler.noisy |
Noisy blurred Doppler signal (Gaussian noise) |
doppler.noisyT |
Noisy blurred Doppler signal (Student $t_2$ noise) |
lidar.blur |
Blurred LIDAR signal |
doppler.blur |
Blurred Doppler signal |
t |
Rime vector scaled to [0,1] |
n |
Sample size |
g |
Convolution kernel |
lidar |
LIDAR signal |
doppler |
Doppler signal. |
seed |
Used in set.seed |
sigma |
Noise standard deviation. |
g.noisy |
Convolution kernel plus Gaussian noise. |
g.noisyT |
Convolution kernel plus Student $t_2$ noise. |
dip |
Degree of Ill-posedness. |
k.scale |
Scale of the convolution kernel |
Marc Raimondo
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
data=waved.example(TRUE,FALSE)
data=waved.example(TRUE,FALSE)